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ABSTRACT

This paper introduces a technique for mining a collection of
user transactions with an Internet search engine to discover
clusters of similar queries and similar URLs. The informa-
tion we exploit is “clickthrough data”: each record consists
of a user’s query to a search engine along with the URL
which the user selected from among the candidates offered
by the search engine. By viewing this dataset as a bipartite
graph, with the vertices on one side corresponding to queries
and on the other side to URLs, one can apply an agglomer-
ative clustering algorithm to the graph’s vertices to identify
related queries and URLs. One noteworthy feature of the
proposed algorithm is that it is “content-ignorant”—the al-
gorithm makes no use of the actual content of the queries or
URLs, but only how they co-occur within the clickthrough
data. We describe how to enlist the discovered clusters to
assist users in web search, and measure the effectiveness of
the discovered clusters in the Lycos search engine.

Categoriesand Subject Descriptors

H.3.3 [Information Search and Retrieval]: Clustering;
H.3.5 [Online Information Services]: Web-based services

1. INTRODUCTION

With the increasing size and popularity of the Internet—
there exist over a billion static web pages, and some com-
mercial search engines service tens of millions of queries per
day [14]—has evolved an acute need for automatic methods
to organize this data. One strategy for bringing a degree of
order to a massive, unstructured dataset is to group simi-
lar items together. This paper introduces a technique for
finding clusters of related queries and related URLs from a
collection of user transactions with an Internet search en-
gine.

Most standard document clustering algorithms represent a
document as a weighted attribute vector in a high-dimensional
space, and group documents based on their proximity ac-
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cording to some distance metric in this space [15, 18]. A
distinguishing characteristic of the algorithm proposed here
is that it is able to discover highly coherent clusters of URLs
without having to embed the pages in a vector space. In fact,
the algorithm does not rely at all on the content of the pages,
but instead uses co-occurrence information across multiple
transactions to guide its clustering.

In proposing to mine information from a large database of
transactions, this paper bears resemblance to recent work
in market basket analysis, whose goal is to find correlations
among individual purchases in a retail setting [1]. That work
has subsequently been extended to handle “generalized mar-
ket baskets,” such as documents, which happen to contain
words rather than groceries [3].

The clustering strategy described here follows from two re-
lated observations. First, the fact that users with the same
information need may phrase their query differently to a
search engine—cheetahs and wild cats—but select the same
URL from among those offered to them to fulfill that need
suggests that the queries are related. Second, the fact that
after issuing the same query, users may visit two differ-
ent URLs—www.fundz.com and www.mutualfundsite.com,
say—is evidence that the URLs are similar.

This paper will proceed as follows. Section 2 surveys prior
work in the areas of clustering and query log analysis. Sec-
tion 3 explains the nature of the “clickthrough data” we use
for clustering. Section 4 explains how one can reduce the
query/URL clustering algorithm to a problem of partition-
ing vertices in a bipartite graph. Section 5 illustrates the
behavior of the clustering algorithm with statistics and ex-
amples of discovered clusters. Section 6 proposes a practical,
commercially-inspired method for measuring the quality of
different query clustering, and reports how well the algo-
rithms of Section 4 fared in this regard.

2. PREVIOUS WORK

This paper brings together three more or less independent
lines of investigation in Internet datamining: query log anal-
ysis, web page clustering, and query clustering.

2.1 Query log analysis

Because of the proprietary nature of the information, the sci-
entific literature contain very little analysis of data collected
from large-scale commercial search engines. An exception is
Silverstein et. al [17], who reported statistics accumulated



from a billion-entry set of user queries to Altavista. Earlier,
Jansen et. al [9] examined a considerably smaller 51,000~
query log.

One of the central aims of the present work was to develop
a rapid turnaround clustering module capable of identifying
and adapting to late-breaking or ephemeral trends in web us-
age. Therefore, unlike Silverstein’s analysis, which involved
a query log accumulated over six weeks, we are more inter-
ested in discovering information from a single day’s records.
After having processed the day’s queries, a clusterer could
provide “fresh” clusters for deployment in the search engine
the following day. This is critical for rapid response to news
events. Where Sprint and MCI/Worldcom are two unrelated
telecommunication companies one day, they might announce
a merger the very next day. As soon as possible after the
announced merger, a search engine with a rapid-turnaround
clustering module could, in response to the query Sprint,
propose www.mci.com as a possibly relevant URL, and sug-
gest MCI/Worldcom as a related query.

2.2 Clustering URLs

A high quality URL clustering algorithm could help in au-
tomating the process of ontology generation (the task which
Yahoo and OpenDirectory human employees perform), or-
ganizing bookmark files into categories, constructing a user-
specific profile of “pages this person finds interesting,” and
grouping the results of a web search by category. Not sur-
prisingly, the past few years have witnessed a great deal of
interest in this area [2, 4, 19].

Researchers have been investigating the more general prob-
lem of document clustering algorithms for decades, and it
makes sense to consider how well these approaches—which
do not exploit the correlations between documents and queries
inherent in a search engine transaction database—would fare
on a subset of the Internet. One popular technique is k-
means [8], whose running time is linear in the number of
documents n but is most effective in the rather restrictive
scenario when the documents lie in a spherical configuration
with respect to the underlying metric [19]. Also popular
are hierarchical agglomerative clustering (HAC) techniques,
typically at least quadratic in n, which repeatedly find the
closest two documents and merge them. Both methods are
susceptible to undesirable behavior when faced with outliers.

Our approach falls into the HAC category, but differs from
traditional techniques in one significant way. Namely, the
distance between two documents can be evaluated without
examining the contents of those documents, a property we
shall refer to as “content-ignorance.” This stands in contrast
to traditional “content-aware” clustering algorithms, which
typically use as a distance between documents some function
of the fraction of tokens they have in common.

Clustering web pages by content may require storing and
manipulating a staggeringly large amount of data: by early
2000, there were at least a billion pages on the Internet ac-
cessible by commercial search engines [7]. Content-ignorance
can obviously be a valuable property when handling a dataset
of this scale. It can also be applicable, at least in principle,
in settings where content-aware clustering is not, including:

o Text-free pages: A distance function calculated from
the text of a web page isn’t capable of recognizing the
correspondence between a web page containing just a
picture of an emu and another describing the appear-
ance and behavior of a emu.

o Pages with restricted-access: URLs may be password-
protected or temporarily unavailable, rendering them
unavailable to a clustering procedure which relies on
the content of the page.

e Pages with dynamic content: A URL might always
point to a company’s web page, but the contents of
that page are likely to change regularly, updated with
news about the company. A content-aware clusterer is
more susceptible to placing a URL in different clusters
as the page is modified.

The last and perhaps most important advantage is that
content-ignorant clustering can be implemented relatively
more efficiently than standard agglomerative techniques. This
will become apparent in Section 4.1, which describes how
the graph-based distance function we use allows for efficient
memoization as the algorithm proceeds, drastically reducing
the computational cost of standard HAC methods.

Another flavor of document clustering, which we mention
only to distinguish from the clustering discussed here, is lo-
cating groups of identical or nearly-equivalent documents in
a large database like the Internet. Broder et. al [4] intro-
duced a technique which involves calculating a “fingerprint”
of a web page based on contiguous subsequences of tokens
in the page, and evaluated the algorithm on 30 million web
pages collected by AltaVista in April 1996. Shivakumar and
Garcia-Molina [16] also examine syntactic resemblance in
the context of detecting copyright violation, and applied
their algorithm to a collection of 50,000 netnews articles.
It appears that finding equivalence classes of URLs, all of
which point to the same (or nearly identical) files, requires
a content-aware strategy.

2.3 Clustering queries

Clustering queries submitted to search engines appears to be
a rather less explored problem than clustering web pages,
though there are practical, commercial applications for a
high-quality query clusterer. For instance, if a user submits
to a search engine a query g which is a member of a cluster C,
the search engine could suggest as alternate, related queries
the other members of C. Such a “related query” tool is
deployed in the Lycos search engine; the component appears
in Figure 1.

A recent, independent survey of 40,000 web users found
that after a failed search, 76% of users try rephrasing their
query on the same search engine, instead of resorting to a
different search engine [14]. Moreover, historical trends of
search engine usage patterns show that users have begun
to rely more—a twenty percent increase during 1999—on
single-term queries. This suggests that many users rely on
search engines to help them home in an optimal representa-
tion of their information need.
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Figure 1: Many commercial search engines offer users the opportunity to rephrase their information need by
suggesting alternate queries. Shown is the top of a page generated by Lycos in response to the query American
Airlines. A query clustering algorithm could provide such a list of suggestions by offering, in response to a

query g, the other members of the cluster containing q.

3. CLICKTHR OUGH DATA

The http protocol allows commercial search engines the abil-
ity to record a great deal of information about their users—
the name and [P address of the machine which sent the
request, the type of web browser running on the machine,
the screen resolution of the machine, and so on. Here we
are interested only in the sequence of characters comprising
the query submitted by the user, and the URL selected by
that user from among the choices presented by the search
engine. Table 1 lists a small extract of clickthrough records
(query, URL) from a recent Lycos log.

For the experiments reported in this paper, we applied a
simple filter to detect and remove those records containing
objectionable content such as pornography and hate speech.
This eliminated about 20% of the records gathered, includ-
ing an undetermined number of false positives and negatives.
We also mapped the query characters to lowercase and con-
verted a sequence of one or more spaces to +, but otherwise
performed no processing of the queries submitted to Lycos.

We avoid significant preprocessing of the search engine log-
file to underscore the “pushbutton” nature of the proposed
clustering algorithm. Clearly, however, even a minimal amount
of preprocessing could go a long way in helping the cluster-
ing. For instance, the query in the second entry of Table 1
contains a comma, which distinguishes it from the seman-
tically identical missoula+mt. And the ninth query in the
table contains an easily-detectable misspelling, which distin-
guishes it from bulldog+homepage. Query and URL canon-
icalization aren’t really necessary, however, since the algo-
rithm introduced in the next section will uncover these sorts
of equivalences anyway.

4. GRAPH-BASEDITERATIVE CLUSTER-
ING

We now describe a technique for using a collection of click-
through records to simultaneously discover (a) disjoint sets
of queries, where the members of a single group represent
(roughly speaking) different ways of expressing a similar in-
formation need, and (b) disjoint sets of URLs, where the
members of a single group represent different web pages cor-

responding to similar information needs.

Starting from a corpus of clickthrough data, the first step
is to construct a bipartite graph where the vertices on one
side correspond to unique queries, the vertices on the other
side to unique URLs, and edges exist between a query and
URL vertex when they co-occurred in a clickthrough record.
Algorithm 1 details this construction.

Algorithm 1: Bipartite graph construction

Input: Clickthrough data C in the form of (query, URL)
pairs, as in Table 1.
Qutput: Bipartite graph G

1. Collect a set @ of unique queries from C
2. Collect a set U of unique urls from C

3. For each of the n unique queries, create a “white” ver-
tex in G.

4. For each of the m unique urls, create a “black” vertex

inG.

5. If query g appeared with url u, then place an edge in
G between the corresponding white and black vertices.

Intuitively, if we write A/(z) for the set of vertices neighbor-
ing vertex z in a graph, then vertex y is “similar” to vertex
z if M(z) and N (y) have a large overlap. More formally,
define the similarity o(z,y) between vertices z and y by

N(z) N N(y)
N(z)UN(y)’

)

if | N(z) UN(y) | >0

otherwise

olr,y) = (1)

The similarity between two vertices lies in the range [0...1]:
0 if the vertices have no neighbors in common, and 1 if they
have exactly the same neighbors. This definition of simi-
larity is straightforward, intuitive, and convenient to work
with, but does suffer from not distinguishing between two
vertices which each have the same neighbor and two vertices
which each have the same two neighbors.
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Table 1: A small excerpt of Lycos clickthrough records—user query and the selected URL—for a single day

in February 2000.

To use G to discover groups of similar queries, one could
simply apply an agglomerative clustering algorithm to the
white nodes of G, using 1— o as the distance between nodes*
One could apply the same procedure to black nodes to find
groups of related URLs. Algorithm 2 iterates between these
two clustering procedures, first combining the two most sim-
ilar queries, then combining the two most similar URLs, and
repeating.

Algorithm 2: Agglomerative iterative clustering

Input: Bipartite graph G

Output: A new bipartite graph G': each white (black) ver-
tex of G’ corresponds to one or more white (black)
vertices of G.

1. Score all pairs of white vertices in G according to (1)

2. Merge the two white vertices w;, w; for which o (w;, w;)
is largest.

3. Score all pairs of black vertices in G according to (1)

4. Merge the two black vertices b;,b; for which o(b;,b;)
is largest.

5. Unless a termination condition applies, go to step 1.

At first glance, it might not be entirely clear why an itera-
tive approach is necessary. Why not simply cluster the white
(query) vertices first, and then cluster the black (URL) ver-
tices? The purpose of iteration is to reveal similarities be-
tween vertices which aren’t apparent in the original graph.
Figure 2 provides a simple example.

!That 1 — o is indeed a metric is not difficult to prove, but
lies outside the scope of this paper.

o
o
=

(@]
N
(@]

Figure 2: Left: White vertices ¢ and ¢ have a simi-
larity o(a,c) = 0. Right: After merging black vertices
1 and 2, which have a similarity of 1/3, vertices a and
¢ suddenly appear quite similar. The power of ag-
glomerative clustering lies in its ability to uncover
such latent relationships between nodes.

Algorithm 2 leaves undefined the matter of a termination
condition. Omne reasonable strategy is to iterate until the
resulting graph consists of connected components, each with
a single query and URL vertex. In other words, continue
clustering until

ql{r;?éiga(qi, g;)=0 and uﬂ?)él/{ o(ui,uj) =0

This condition is almost certainly too severe, and we are
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Figure 3: Progression of Algorithm 2 on a small collection of clickthrough records. Clockwise, from top left:
(a) The original bipartite graph, unclustered. (b) After the initial query clustering (c) After the initial URL
clustering (d) At termination: the edges here correspond to connected components in the original graph.

currently exploring other threshold criteria. Allowing Algo-
rithm 2 to run until the above termination condition (i.e.
finding the connected components in g) is a well-studied
task for which there exist several viable solutions, including
simple depth-first search [5]. The matter of knowing when
to stop in hierarchical agglomerative clustering algorithms
has been explored, but not resolved [12].

4.1 Complexity of clustering

If G contains n,, white vertices and np black vertices, a naive
analysis suggests that Algorithm 2 requires ©(n% + nj) op-
erations per iteration to calculate all pairwise distances and
select the best merge. Fortunately, taking note of a few
simple observations reduces the complexity of the algorithm
dramatically.

We define two vertices to be siblingsif they share a neighbor.
In principle, § may contain up to (nZ, —n.,)/2 unique white-
vertex siblings. But since bipartite graphs constructed from
clickthrough data using Algorithm 1 are (in our experience)
quite sparse, the number of siblings is in practice much

smaller (essentially constant). Denoting by | A | the

max

maximum number of neighbors of any vertex in G, the num-
ber of sibling white vertices in G before Algorithm 2 com-
mences is bounded above by n.| A |, *. Moreover, it is
fairly intuitive that the number of siblings in G can only

decrease during the execution of Algorithm 2.

The key to an efficient implementation of Algorithm 2 is
recognizing that after calculating o(z, y) once for all relevant
vertex pairs, only a few o(z,y) values will change at any
iteration. Specifically, after merging two white nodes w;
and ws, the distance between b; and by changes only if

wi € N(b) UN(b2) and wy € N(bi)UN(b2)  (2)

So after a one-time computation to calculate all o values,
Algorithm 2 requires at most 2| A" | distance calculations
after each merge.

Putting these observations together, we arrive at a conser-
vative upper bound for the number of operations required



in Algorithm 2:
(le + le)| N |max2 +m (4| N |

rnax)

One-time computation per iteration

where m is the number of iterations (merges) desired.

5. RESULTS

This section describes the result of applying Algorithms 1
and 2 to a collection of clickthrough records provided by Ly-
cos. The two algorithms were run on a 266 MHz processor
in a Sun UltraSPARC workstation with 1.5GB of physical
memory, and required about ten wall clock hours of compu-
tation.

We started with a set of 500, 000 clickthrough records, a por-
tion of a single day’s transactions on the Lycos search engine
in early 2000. Applying Algorithm 1 on this dataset gener-
ated a graph G with 243, 595 white nodes and 361, 906 black
nodes. The graph G is, not surprisingly, quite sparse: though
a fully connected graph would have had n,(nw —1)/2 = 29
billion white siblings, G had fewer than two million. Table 5
contains the white and black “sibling density” of G, along
with a number of other statistics from this dataset.

Clickthrough records: 500, 000
Unique queries: 243, 595
Unique URLs: 361, 906
Query sibling pairs: 1,895,111
Query edge density: 6.38 x 107°
URL sibling pairs: 476, 505
URL edge density: 7.27 x 107°¢

Table 2: Statistics of the Lycos clickthrough
database used in the experiments reported here.
“Query sibling pairs” are queries which both oc-
curred in a clickthrough record with the same URL;
in terms of the corresponding bipartite graph, these
are pairs of white vertices with a common neigh-
bor. This value limits the number of iterations Al-
gorithm 2 can perform on the dataset before the
similarity between any two candidate query vertices
becomes zero.

6. USING QUERY CLUSTERSTO ENHANCE

WEB SEARCH

As do many commercial web search engines, Lycos offers a
list of alternate query formulations for selected queries. The
selection of suggestions is driven by an algorithm which re-
lies on the search refinement behavior of past Lycos users. A
(query, suggestion) pair is selected for inclusion in this base-
line system if the number of past user sessions the pair has
co-occurred in meets various information-theoretic criteria.

The baseline algorithm has the weakness that it is data-
intensive and based exclusively on having witnessed its spe-
cific suggestions in hindsight. This shortcoming means the
algorithm is ill-equipped to track emerging topics of interest
to users, such as events in the news and newly publicized
web sites.

A tempting strategy for assessing the quality of a query

suggestor is to inspect the suggestions and see how reason-
able they look. But in fact it may be ill-advised to judge
query /suggestion pairs on the basis of whether they “make
sense together.” Some perfectly valid pairs seem unrelated
at first glance—the query WWF, for example, may seem to be
a spurious suggestion for the input query Pokemon, but in
fact the suggestion makes sense: the demographic profiles
of searchers for these items are similar.

The most important feature of a measure of cluster quality is
that it be suitable to its intended application. In this spirit,
we employ as an objective function the clickthrough rate of a
given list of suggestions: the proportion of instances the list
was presented to the user that one of its elements was clicked
on. If the rest of the search experience is held constant, this
function is a concrete measure of the value provided to the
search engine and to the end user by a particular suggestion
method.

We experimented with three different methods for build-
ing “suggestion lists” (a list of alternate formulations of a
query):

Baseline: the standard Lycos query-suggestion algo-
rithm.

Full-replacement: For a subset of search requests
Q € Q selected blindly from the list of most frequently
accessed search requests at Lycos, replace the default
suggestion list with up to eight members of the clus-
ter that contains ¢q. We only apply this technique to
queries whose constituent words all appear in some
cluster. To decide which members of the cluster should
participate in the suggestion list, we select those mem-
bers which occurred most frequently in the 500,000
clickthrough records from which the clustering was
learned.

Hybrid: Replace some, but not all of the suggested
rephrasings with the clustering suggestions. More specif-
ically, we replace the “weakest” (lowest-ranking) de-
fault suggestions with the best available clustering-
based suggestion, skipping replacements that would
introduce repeats into the suggestion list.

For each method, we measured its impact on the live Lycos
search engine by enaging the associated suggestion method
for a two-day period. Each period included a Friday and
a Saturday in April, 2000. Table 3 shows the aggregate
results, which suggest that the hybrid method outperforms
the baseline and full-replacement strategies.

Offline, we later measured the clickthrough rates on the
suggestions that are triggered by queries in Q. Table 4
shows the cumulative results for five blindly-selected popu-
lar queries, and the aggregate statistics over all five queries.
Table 5 shows the list of suggested replacements for the six
blindly selected queries.

The experiments demonstrate that the hybrid method slightly
outperforms both the baseline method and the cluster-based
method in the aggregate, although it is inferior for certain
individual queries.
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Figure 4: Selected query clusters generated automatically from by Algorithm 2 on a collection of 500,000
clickthrough records provided by Lycos. The algorithm had run for 100,000 iterations. The numbers in
parentheses are the total number of appearances of all members of the cluster within the clickthrough data.

period strategy impressions  clicks  clickthrough rate
April 7-8 baseline 6,120,943 71138 1.16%
April 14-15 hybrid 6,058,757 79515 1.31%
April 21-22  full replacement 5,985997 61377 1.03%

Table 3: Aggregated clickthrough results for the three query-suggestion methods described in this section.
“Impressions” is the number of times the list of suggestions was presented to a user during this time period.

For established, high-traffic queries such as American Airlines,

the baseline algorithm outperforms both its competitors, be-
cause its large store of highly targeted user session data for
this query is well matched with what is of interest to users
in the future. But for bibliofind, a rarer query of emerg-
ing interest to select users, session data is not available in
sufficient quantity for the baseline algorithm to identify a
reasonable set of alternatives. For such queries the cluster-
based suggestion list appears preferable.

7. DISCUSSION

The central contribution of this paper is a substantiated
claim that a collection of web search engine transactions
is a fertile source from which to harvest clusters of related
queries and related web pages. The proposed strategy is
to view the clickthrough records as a bipartite graph, and
apply an iterative, agglomerative clustering algorithm to the
vertices of this graph.

The notion of applying datamining techniques to informa-
tion discovery in a database of web transactions is not a
new one. Mobasher et. al suggest applying the technique of
association rule discovery to find correlations in web server
access logs. For instance, the algorithm might discover that
clients who requested file # were subsequently very likely to
request file y [13].

In recasting document clustering as a problem in discover-
ing similar vertices in a graph, this work bears some sem-
blance to recent work by Boley et.al [2]. Their strategy

is to use association rule discovery to find pairs of similar
document (using the document contents), building a graph
whose vertices correspond to documents and edges corre-
spond to discovered associations, and then using standard
graph partitioning techniques to find related vertices.

Though this paper has focused on the web domain, we an-
ticipate that the graph-based technique should work equally
well in other settings. For instance, one could apply Algo-
rithms 1 and 2 to a database of online purchase transactions
to cluster consumers and items. Grouping together related
customers is closely related to the emerging problem of col-
laborative filtering: mining large databases of user transac-
tions in order to recommend items—books, movies, or even
politicians—which the system expects the user might find
of interest [6, 11].

Within a search engine, page clustering could serve two
purposes. First is to organize all web pages a priori into
groups, independent of any particular user. Second to clus-
ter just those pages suggested to a user in response to their
query [19], as an aid in browsing the search results. Al-
though we have conducted this research with an eye to the
former setting, one could certainly apply graph-based clus-
tering just to a small set of URLs, by selecting out those
clickthrough records containing the URLs, and applying the
clustering algorithm to this dataset.

Section 6 described a practical strategy for measuring the
quality of a query clustering: one clustering is superior to



www.nationalcar.com/
flyaow.com/carrentals.shtml
www.hertz.com/
www.bnm.com/rcar.htm
www.nationalcar-europe.com/ (80)

www.ragingbull.com/
www.ragingbull.com
hedge-hog.com/bbs/messages/166.html
quote.ragingbull.com/ (30)

metallica.andmuchmore.com/
www.www.metallica.com/
www.metallica.com

rollingstone.lycos.com/artists/default.asp?LookUpString=227
eonline.com/Reviews/Music/Scoop/000314b.html (27)

www.adopting.com/agencies3.html
www.adopt.org/ (13)

www. history-of-rock.com
www.rockhall.com/
www.experience.org (12)

www.princesscruises.com/
www.awcyv.com/princess. html
www.freecruisequote.com
www.hotcruise.com/princesscruises.htm (9)

help-wanted.net
www. helpwusa.com
www.helpwantedpage.com/ (6)

Figure 5: Selected URL clusters generated automatically from by Algorithm 2 on the same collection of

clickthrough records as described above.

another if people find the first clustering more useful in in-
teracting with a web search engine. We plan to perform a
complementary set of experiments to evaluate quality of the
URL clusters, again by observing how the behavior of users
interacting with the Lycos search engine changes as they are
provided access to clusters calculated from query log data.

Despite the efficiency measures suggested in Section 4.1, Al-
gorithm 2 is still a form of hierarchical agglomerative clus-
tering, and, as presented, only merges one query and docu-
ment cluster per iteration. We are exploring greedy strate-
gies for speeding up the clustering process by performing
many merges at once.

One question addressed but not resolved by this work is how
best to combine the complementary strategies of content-
ignorant and content-aware clustering. Each method has
weaknesses.  Clickthrough data suffers in that “unpopu-
lar” URLs—those never appearing in the clickthrough data
because they were never selected by a user—can’t be pro-
cessed. A content-aware clusterer can examine the content
of all pages, popular or not, but fails to recognize the po-
tentially rich source of knowledge about queries and URLs
latent within a search engine log.
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airline+
reservations

bi bl i of i nd

e-mai | +cards

aneri can+
airlines

ant r ak

ganmeboy+
enul at or

Sout hwest airlines, airline
tickets, Anmerican Airlines,
Continental Airlines,
Airline travel

Adebooks, Bookfinder, Abe

Free e-mail cards

Delta Airlines, United
Airlines, Southwest
Airlines, Continental
Airlines, Airlines,
Nort hwest Airlines, Delta,
Airline tickets

Antrack, G eyhound, Trains,
train, Amtrac, G eyhound
bus, Southwest airlines,

Delta

Gameboy ROV, enul ator,
Pokenon ROVs

Hybrid

Sout hwest airlines, airline
tickets, Anmerican Airlines, Travel
agenci es, plane tickets

Rare books, used books, books used

Talk Gty

United Airlines,
Conti nent al

Delta airlines,
Sout hwest Airlines,

Airlines, ww. aa.com aa.com air
fairs, american airline
Antrack, Geyhound, Trains, Antrak

schedul es, www. ant rack. com
antrack reservations, antrack.com
train antrak

Ni nt endo

Gameboy ROMs, enul ator,
ROVs

agency,
hotel s carribean,

Rare books,

agenci es, plane tickets, travel
low airfare, hotel reservations,
travel osity, sabre.com

Travel

used books, books used, out of
print botany books, out-of-print books,
out of print books, books antique, rare
books’

swan backgrounds, insurance

seminar, creatacard, postnet.com
greatingcards, 4anything.com lariam
di scussi on groups

Talk Gity,

wwwv. aa. com aa.com air fairs, american
airline, 'anerican airlines’, anerican
air, anr.com american eagle airlines

Antrak schedul es, Antrack,
www. ant rack. com antrack reservations,
antrack.com train antrak, antrack train
schedul e, train antrack

Enmul ator, Nintendo ROV, NES ROM

Table 5: Suggested replacements for the six blindly-selected queries.



